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1 Motivation

One of the fundamental concept in Math Finance I regarding the Black-Scholes model

is the following: Suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µ(u)S(u)du+

∫ t

0

S(u)dW (u),

under the objective probability P. Unless µ(u) = r, the interest rate, (which we

supposed to be a constant for simplicty) e−rtS(t) is not a martingale under P, and

thus we cannot price financial product under P. We need to find another measure Q,

the risk neutral measure, so that e−rtS(t) is a martingale udner Q. The key idea is

that under Q, it must be the case that W̃ (t) :=
∫ t
0
(µ(u)− r)du+W (t) is a Brownian

motion. So that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u)dW̃ (u)

has the right distribution under Q.

Intuitively, the measure Q is chosen so that we can “modify the drift” of W (t) and

still have the new process W̃ (t) being a Brownian motion; which results in modifying

the drift of S(t) to the desirable drift( in this case, r ).

Now suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µS(u)du+

∫ t

0

S(u−)dM(u),
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under some objective probability measure P, whereM(t) = N(t)−λt is a compensated

Poisson process with rate λ under P. Again, we would like that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u−)dM̃(u),

where M̃(t) := M(t)−(r−µ)t is a martingale under a probability measure Q. Again,

since M(t) = N(t) − λt, it is clear that M̃(t) is a martingale if N(t) becomes a

Poisson process with rate λ − (r − µ) under Q. This note discusses how to choose

such a measure Q for various choices of jump martingales M .

2 Review of change of measure, Girsanov’s theo-

rem

Reading material: Shreve’s Section 5.2, Ocone’s lecture note 2, section 1,2 and 3.

Important points:

(All statements in this section about martingale without qualification will be with

respect to the filtration F(t).)

(i) Let P be a probability measure on (Ω,F); F(t), 0 ≤ t ≤ T a filtration with

F(T ) = F . . If we define another probability measure Q on (Ω,F(T )) via the relation

dQ = Z(T )dP,

for some random variable Z(T ), that is for all Y ∈ F(T )

EQ(Y ) := EP(Z(T )Y ),

it must be that P(Z(T ) ≥ 0) = 1 and EP(Z(T )) = 1.

(ii) (Restriction of Q to a smaller sigma algebra F(t) - Shreve’s Lemma 5.2.1) Let

F(t), 0 ≤ t ≤ T be a filtration associated with a probability space (Ω,P,F(T )). If

Z(t) is a P martingale, Z(T ) satisfies the conditions in (i), then for all Y ∈ F(t)

EQ(Y ) = EP(Z(t)Y ).

Note that this is not a definition but a result that follows from the definition in

(i) and the fact that Z is a martingale.

(iii) Conditional expectation in change of measure: Suppose the set up in (i) and

(ii) apply. Let Y (t) be F(t) measureable. Then we have for s ≤ t

EQ(Y |F(s)) =
EP(Z(t)Y |F(s))

Z(s)
.
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Again note that we need Z(t) to be a P-martingale here. In general we have to

use EP(Z(t)|F(s)) in place of Z(s) in the denominator (see Ocone’s lecture note 2

Section 2).

(iv) Let X(t) be a F(t) adapted process, Z(t) a P-martingale then X(t)Z(t) is a P
martingale if and only if X(t) is a Q-martingale. (See Ocone’s lecture note 2 Section

3)

Think of X(t) as the “Brownian motion with drift” W̃ (t) or the process M̃(t)

in section I. Recall that we want W̃ (t) (or M̃(t)) be a martingale under Q. This

statement gives a sufficient condition for this to happen.

3 Some heuristics about Girsanov theorem

3.1 Characterization of Brownian motion

We all know the Levy’s characterization of Brownian motion: continuous martingale

with quadratic variation on [0, t] equals to t. There is an equivalent characterization:

Theorem 3.1. Let X(t) be a continuous process such that X(0) = 0. Then X(t) is

a Brownian motion w.r.t a filtration F(t) if and only if for all u ∈ R,

Eu(X)(t) := exp(iuX(t)− 1

2
(iu)2t)

is a martingale w.r.t F(t).

We won’t give a proof of this theorem. The direction starting with X(t) a Brown-

ian motion is easy. Heuristically, the converse can be argued as followed: if Eu(X)(t)

is a martingale then for s < t

E(exp
(
iu[X(t)−X(s)]

)
|F(s)) = exp[

1

2
(iu)2(t− s)].

Since the RHS is independent of F(s), X(t)−X(s) is independent of F(s). Hence it

has independent increments. Moreover, the characteristic function of X(t)−X(s) is

that of a Normal(0, t − s). Hence it has stationary increments, and the increments

has Normal(0, t− s) distribution. This is the definition of a Brownian motion.

3.2 Choice of Z(t) in Girsanov Theorem

Suppose that W (t) is a P Brownian motion. We want to find Q via dQ = Z(T )dP
so that W̃ (t) := W (t) + αt is a Q Brownian motion. From the characterization of
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Brownian motion, we need Eu(W̃ )(t) to be a Q martingale. Observe that

exp
(
iuW̃ (t)− 1

2
(iu)2t

)
= exp

(
iuW (t)− 1

2
[(iu)2 − 2iuα]t

)
.

From point (iv) of Section (2), Z(t) has to be a P-martingale, and W̃ (t)Z(t) also

a P-martingale. Since

(iu)2 − 2iuα = (iu− α)2 − α2,

and clearly

exp
(

(iu+ α)W (t)− 1

2
(iu+ α)2t

)
is a P-martingale, we may guess the choice for Z(t) is

Z(t) = exp(−αW (t)− 1

2
α2t).

This intution also suggests that if we want W̃ (t) = W (t) +
∫ t
0
α(u)du to be a Q

Brownian motion, the choice of Z(t) is

Z(t) = exp(

∫ t

0

α(u)dW (u)− 1

2

∫ t

0

α(u)2du),

even though the verification now is slightly more involved.

4 Heuristics about change of measure for Poisson

process

4.1 Poisson process characterization

Theorem 4.1. A càdlàg process N(t), N(0) = 0, is a Poisson process with rate λ

w.r.t F(t) if and only if for all u ∈ R

exp
(
iuN(t)− λt(eiu − 1)

)
is a martingale w.r.t F(t).

The heuristics for this theorem is similar to the heuristics for the characterization

of Brownian motion.
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4.2 Choice of Z(t)

Suppose N(t) is a Poisson process with rate λ under P. We want to find Q via

dQ = Z(T )dP so that N(t) has rate λ̃ under Q. By the characterization of Poisson

process, we want

exp
(
iuN(t)− λ̃t(eiu − 1)

)
to be a Q-martingale.

Observe that

λ̃eiu = λ
λ̃

λ
eiu = λe

i(u−i log
(
λ̃
λ

)
)
.

Since

exp
[
i(u− i log

(
λ̃

λ

)
)N(t)− λt(ei(u−i log

(
λ̃
λ

)
) − 1)

]
is a P martingale, it is clear that we want

Z(t) = exp
[

log

(
λ̃

λ

)
N(t) + (λ− λ̃)t

]
,

and it is indeed the case.

5 Change of measures for jump processes

In this section, we give the change of measure results (the choices of Z(t)) and the

distribution of the process in the new measure for different jump processes. We only

summarize the main results. The proofs of these are provided in Shreve’s section 11.6.

5.1 Poisson process

Let N(t) be a Poisson process with rate λ under a probabilty P and F(t) a filtration

for N(t). We want to change the intensity of N(t) via the change of measure: for any

λ̃, we find a probabilty Q so that N(t) is a Poisson process with rate λ̃ under Q.

Definition 5.1. Fix T > 0. Let λ̃ be given. Define

Z(t) := e(λ−λ̃)t

(
λ̃

λ

)N(t)

, 0 ≤ t ≤ T.
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Also define

dQ = Z(T )dP on F(T ).

We have the important results: (Shreve’s Lemma 11.6.1, Theorem 11.6.2)

Theorem 5.2. Z(t) is a P martingale (w.r.t. F(t)). Under Q, N(t) is a Poisson

process with rate λ̃.

5.2 Compound Poisson with discrete jump distribution

Let Q(t) be a compound Poisson process with rate λ (by which we really mean

Q(t) =
∑N

i=1(t)Yi and N(t) has rate λ) under a probabilty P and F(t) a filtration for

Q(t). Recall that each jump of Q(t) has identical distribution Yi. Here we assume

that Y1 (hence all Yi’s) takes values y1, y2, ..., yM with probability

P(Y1 = ym) = p(ym), 1 ≤ m ≤M

that is Y1 has discrete distribution.

We want to change the intensity of Q(t) as well as the distribution of Yi (that is to

change p(ym)) via the change of measure. For any λ̃ > 0 and p̃(ym) ∈ (0, 1),
∑M

m=1 p̃(ym) =

1 we find the probabilty Q so that under Q, Q(t) is a compound Poisson process with

rate λ̃ and Yi has distribution

Q(Y1 = ym) = p̃(ym), 1 ≤ m ≤M.

Before we proceed, we state the following Lemma about decomposition of our

compound Poisson process (see e.g. Shreve’s Corollary 11.3.4 and Ocone’s Lecture

note 1 section V.D).

Lemma 5.3. Let Nm(t) denote the number of jumps of Q(t) of size ym up to and

including time t. Then (under P) Nm(t) is a Poisson process with rate λm = λp(ym).

Moreover, Nm’s are independent processes.

Definition 5.4. Fix T > 0. Let λ̃m,m = 1, 2, ...,M be given. Define

Zm(t) := e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

, 0 ≤ t ≤ T

Z(t) :=
M∏
m=1

Zm(t).
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Also define

dQ = Z(T )dP on F(T ).

We have: (Shreve’s Lemma 11.6.4, Theorem 11.6.5)

Theorem 5.5. Z(t) is a P martingale (w.r.t. F(t)). Define

λ̃ =
M∑
m=1

λ̃m

p̃(ym) =
λ̃m

λ̃
.

Under Q, Q(t) is a compound Poisson process with rate λ̃ and Q(Yi = ym) = p̃(ym).

We need several remarks to illustrate the important observations here.

Remark 5.6. First, we mentioned at the beginning of this section that we can choose

λ̃ and p̃(ym), while Theorem (5.5) says we choose λ̃m. The difference is artificial.

Indeed, given λ̃m we can define λ̃ and p̃(ym) as in the Theorem. But conversely, we

can start out with λ̃ and p̃(ym) and define λ̃m := p̃(ym)λ̃. Intuitively it might be easier

to remember what we want to accomplish via the Theorem than the details, but it’s

up to you to decide which form to remember.

Remark 5.7. Observe that
∑

m λm = λ and
∑

m λ̃m = λ̃. Moreover, apply Lemma

(5.3), we can also decompose Q(t) into M independent Poisson process under Q,

each with rate λ̃m. Thus the important observation here is that if we have sums of

independent process, then the right change of measure kernel (Z(t)) is the product of

the the individual change of measure kernels Zm(t). This philosophy will be repeated

in the section for Compound Poisson process and Brownian motion.

Remark 5.8. In the same note as the above remark, observe that

Zm(t) = e[log(λ̃m)−log(λ)]Nm(t)−(λ̃m−λ)t.

Thus

Z(t) = e
∑
m

(
[log(λ̃m)−log(λm)]Nm(t)−(λ̃m−λm)t

)
.

Intuitively, we have M independent Poisson processes with rate λm, and what we are

doing here is to change each of them to rate λ̃m under the probabilty measure Q. The

grand effect is Theorem (5.5).
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5.3 Compound Poisson with continuous jump distribution

Let Q(t) be a compound Poisson process with rate λ under a probabilty P and F(t)

a filtration for Q(t). Here we assume Yi has continuous distribution with density

function f .

We want to change the intensity of Q(t) as well as the distribution of Yi (that is

the density f) via the change of measure. For any density function f̃ and λ̃, we find

a probabilty Q so that under Q, Q(t) is a compound Poisson process with rate λ̃ and

Yi has continuous distribution with densitry f̃ .

There is yet another way to write the process Z(t) in the Section 3.2. Note that

Z(t) = e(λ−λ̃)t
M∏
m=1

(
λ̃p̃(ym)

λp(ym)

)Nm(t)

= e(λ−λ̃)t

(
λ̃N(t)

∏M
m=1[p̃(ym)]Nm(t)

λN(t)
∏M

m=1[p(ym)]Nm(t)

)
.

Observe that since multiplication is commutative, by rearranging terms,

M∏
m=1

[p(ym)]Nm(t) =

N(t)∏
i=1

p(Yi).

Similarly,
M∏
m=1

[p̃(ym)]Nm(t) =

N(t)∏
i=1

p̃(Yi).

Thus

Z(t) = e(λ−λ̃)t

(
λ̃N(t)

∏N(t)
i=1 p̃(Yi)

λN(t)
∏N(t)

i=1 p(Yi)

)

= e(λ−λ̃)t
N(t)∏
i=1

(
λ̃p̃(Yi)

λp(Yi)

)
.

Intuitively, p(ym) can be thought of as the “density” function of Yi’s in the discrete

setting.This suggests the following when Yi has continuous distribution.

Definition 5.9. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z(t) := e(λ−λ̃)t
N(t)∏
i=1

(
λ̃f̃(Yi)

λf(Yi)

)
, 0 ≤ t ≤ T.
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Also define

dQ = Z(T )dP on F(T ).

Remark 5.10. Since the density function f can be 0, to avoid dividing by 0, we

assume f̃(y) = 0 whenver f(y) = 0.

We have the important results: (Shreve’s Lemma 11.6.6, Theorem 11.6.7)

Theorem 5.11. Z(t) is a P martingale (w.r.t. F(t)). Under Q, Q(t) is a compound

Poisson process with rate λ̃ and Yi has continuous distribution with density f̃ .

5.4 Compound Poisson process and Brownian motion

Let Q(t) be a compound Poisson process with rate λ and W (t) a Brownian motion

defined on the same probabilty space (P,Ω,F) and F(t) a filtration for Q(t),W (t).

Here we also assume Yi has continuous distribution with density function f .

We want to change the intensity of Q(t), the distribution of Yi (that is the density

f) and the drift of W (t) via the change of measure. More speficially, given a function

θ(u), constant λ̃ > 0 and density function f̃ , we find the probabilty measure Q
such that under Q, Q(t) is compound Poisson with rate λ̃, Y (i) has density f̃ and

W̃ (t) :=
∫ t
0
θ(u)du+W (t) is a Brownian motion. Here we also assume that f̃(y) = 0

when f(y) = 0.

Remark 5.12. Before we proceed, we note that necessarily in this case W (t) and

Q(t) are independent (see Corollary 11.4.9 and Exercise 11.6 in Shreve’s).

Definition 5.13. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z1(t) := exp
[
−
∫ t

0

θ(u)dW (u)− 1

2
θ2(u)du

]
;

Z2(t) := e(λ−λ̃)t
N(t)∏
i=1

(
λ̃f̃(Yi)

λf(Yi)

)
, 0 ≤ t ≤ T ;

Z(t) := Z1(t)Z2(t).

Also define

dQ = Z(T )dP on F(T ).
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Remark 5.14. Note that Z1(t) is the usual change of measure kernel given by the

Girsanov’s theorem in Section 5.2. This together with the result in Section (5.3),

Remark (5.7) and Remark (5.12), it is no surprise that Z(t) has such form.

We have the important results: (Shreve’s Lemma 11.6.8, Theorem 11.6.9)

Theorem 5.15. Z(t) is a P martingale (w.r.t. F(t)). Under Q, Q(t) is a compound

Poisson process with rate λ̃, Yi has continuous distribution with density f̃ , ˜W (t) =∫ t
0
θ(u)du + W (t) is a Brownian motion. Moreover, Q(t) and ˜W (t) are independent

under Q.

Remark 5.16. Note that we have the parallel between the independence between Q(t)

and W (t) under P and the independence between Q(t) and W̃ (t) under Q. This is

important since we do not have any restriction on θ(t). Indeed θ(t) can be equal to

Q(t) and the independence structure still holds.

Remark 5.17. Even though the theorem in Shreve is stated for Yi having continuous

distribution, it is easy to see that a similar result still holds if Yi has discrete distribu-

tion. In this case, under Q, Yi would also have discrete distribution with a probability

distribution p̃ (see Section (5.2)). The change of measure kernel Z1(t) is the same,

Z2(t) := e(λ−λ̃)t
N(t)∏
i=1

(
λ̃p̃(Yi)

λp(Yi)

)
, 0 ≤ t ≤ T ;

and Z(t) = Z1(t)Z2(t).

6 Pricing a European call for jump models (1)

6.1 The risk neutral measure

Let N(t) be a Poisson process with rate λ. Supose we model the stock price as

dS(t) = αS(t)dt+ σS(t−)dM(t),

where M(t) = N(t) − λt is a P-martingale. Note that here the only random source

of S(t) is from the jump process N(t).

From section 9 of lecture note 1, we also have

S(t) = S(0) exp[(α− λσ)t+ log(1 + σ)N(t)].
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Let r > 0 be the interest rate. We want to find Q such that e−rtS(t) is a Q
martingale. If that is the case, since

dS(t) = rS(t)dt+ σS(t−)(dN(t)− [λ− α− r
σ

]dt)

clearly we need N(t) to be a Poisson process with rate λ̃ = λ− α−r
σ

. Since λ̃ must be

positive, a necessary condition (which implies no arbitrage for the model of S(t)) is

λ− α− r
σ

> 0.

We then define

dQ = Z(T )dP;

Z(t) = exp[log

(
λ̃

λ

)
N(t)− (λ̃− λ)t)].

Note that under Q, we write the dynamics of S(t) as

dS(t) = rS(t)dt+ σS(t−)dM̃(t),

where M̃(t) = N(t)− λ̃t is a Q-martingale, which is equivalent to

S(t) = S(0) exp[(r − λ̃σ)t+ log(1 + σ)N(t)].

6.2 Pricing of European call

Let V (t) denote the risk-neutral price of a European Call paying V (T ) = (S(T )−K)+

at time T . Then by the risk neutral pricing formula, we have

V (t) = EQ[e−r(T−t)(S(T )−K)+|F(t)
]
.

It remains to find an expression for V (t). Clearly

S(T ) = S(t) exp[(r − λ̃σ)(T − t) + log(1 + σ)(N(T )−N(t))].

So by the Independence Lemma, (Shreve’s Lemma (2.3.4)), we only need to eval-

uate

c(t, x) = e−r(T−t)EQ
[(
xe(r−λ̃σ)(T−t)+log(1+σ)(N(T )−N(t)) −K

)+]
,

then we have V (t) = c(t, S(t)).

Since N(T ) − N(t) has distribution Poisson(λ̃(T − t)) under Q, c(t, x) has the

expression as an infinite sum, see Shreve’s formula (11.7.3). We won’t reproduce it

here.

11



7 Pricing a European call for jump models (2)

7.1 Change of measure

Suppose now that

dS(t) = αS(t)dt+ σS(t−)dM(t),

where M(t) = Q(t)−mt is a compensated compound Poisson process under P. Under

the risk neutral probability Q,

dS(t) = rS(t)dt+ σS(t−)dM̃(t)

= (r − σm̃)S(t)dt+ σS(t−)dQ(t).

So clearly we need

(i) Q(t) to be a compound Poisson process under Q with EQ(Q(1)) = m̃.

(ii) r − σm̃ = α− σm.

Note that (ii) gives an equation for m̃. If Q(t) =
∑N(t)

i=1 Yi and under Q, N(t) is a

Poisson process with rate λ̃ and E(Yi) = µ̃ then

m̃ = λ̃µ̃.

So (ii) also gives an equation for λ̃ and f̃ , the distribution of Yi under Q. From the

change of measure sections, we have seen how to choose Z(T ) such that the conditions

(i) and (ii) are satisfied. Note that this choice may not be unique, as generally equation

(ii) has more than 1 unknowns. However, there is also a restriction on the solution

λ̃ > 0. So a simple application of linear algebra result to conclude that there are

infinitely many choices of risk neutral measures is not correct.

7.2 Pricing of European call

Observe that

dS(t) = (r − σm̃)S(t)dt+ σS(t−)dQ(t)

has the solution

S(t) = S(0)e(r−σm̃)t
∏

0<s≤t

(1 + σ∆Q(s))

= S(0)e(r−σm̃)t

N(t)∏
i=1

(1 + σYi).
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Also for t < T

S(T ) = S(t)e(r−σm̃)(T−t)
N(T )∏

i=N(t)+1

(1 + σYi).

Observe the important fact that
∏N(T )

i=N(t)+1(1 +σYi) is independent of F(t), where

F(t) is a filtration for Q(t). We give an explanation in the next subsection.

Thus V (t), the risk-neutral price of a European Call paying V (T ) = (S(T )−K)+

at time T for this model is

V (t) = EQ[e−r(T−t)(S(T )−K)+|F(t)
]

= c(t, S(t)),

where

c(t, x) := e−r(T−t)EQ
[
[xe(r−σm̃)(T−t)

N(T )∏
i=N(t)+1

(1 + σYi)−K]+
]
.

Since Yi are independent of N(T )−N(t), again we can condition on N(T )−N(t) =

j, j = 1, 2, ... to get

c(t, x) = e−r(T−t)
∞∑
j=0

κ(j, x)e−λ̃(T−t)
[λ̃(T − t)]j

j!
,

where

κ(j, x) = EQ
[(
xe(r−σm̃)(T−t)

j∏
i=1

(1 + σYi)−K
)+]

.

7.3 The independence of
∏N(T )

i=N(t)+1(1 + σYi) from F(t)

It is because

N(T )∏
i=N(t)+1

(1 + σYi) =

N(T )−N(t)∏
i=1

(1 + σYi+N(t)).

Since N(T )−N(t) is independent of F(t), by the Independence lemma,

E
[N(T )−N(t)∏

i=1

(1 + σYi+N(t))|F(t)
]

= f(N(t)),
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where

f(k) = E
[N(T )−N(t)∏

i=1

(1 + σYi+k)
]
.

But since Yi are indepedent of N(t),

f(k) = E
[
E
(N(T )−N(t)∏

i=1

(1 + σYi+k)
∣∣N(T )−N(t)

)]
= E

[
[E
(
1 + σY1

∣∣N(T )−N(t)
)
]N(T )−N(t)

]
= E

[(
E(1 + σY1)

)N(T )−N(t)
]
,

which does not depend on k. Thus

E[

N(T )−N(t)∏
i=1

(1 + σYi+N(t))|F(t)] = E[

N(T )−N(t)∏
i=1

(1 + σYi+N(t))],

and we get the independence we need.

8 Pricing a European call for jump models (3)

8.1 Change of measure

Suppose now that

dS(t) = αS(t)dt+ σS(t−)dW (t) + S(t−)dM(t),

where M(t) = Q(t)−mt is a compensated compound Poisson process under P. Under

the risk neutral probability Q,

dS(t) = rS(t)dt+ σS(t−)dW̃ (t) + S(t−)dM̃(t)

= (r − m̃)S(t)dt+ σS(t−)dW̃ (t) + S(t−)dQ(t),

where W̃ (t) := W (t) + θt is a Q Brownian motion and Q(t) is compound Poisson

with EQ(Q(1)) = m̃.

Thus the equation that θ and m̃ have to satisfy is

r + σθ − m̃ = α−m.

Solving this equation for θ and m̃ and use the change of measure result discussed

above, we can find Q such that e−rtS(t) is a Q - martingale.
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8.2 Pricing of European call

Observe that

dS(t) = (r − m̃)S(t)dt+ σS(t−)dW̃ (t) + S(t−)dQ(t),

has the solution

S(t) = S(0) exp
[
(r − m̃− 1

2
σ2)t+ σW̃ (t)

]N(t)∏
i=1

(1 + Yi).

Hence for t < T ,

S(T ) = S(t) exp
[
(r − m̃− 1

2
σ2)(T − t) + σ(W̃ (T )− W̃ (t))

] N(T )∏
i=N(t)+1

(1 + Yi),

where we have the independence of W̃ (T )− W̃ (t) and
∏N(T )

i=N(t)+1(1 + Yi) with respect

to F(t) and also with respect to each other.

Thus V (t), the risk-neutral price of a European Call paying V (T ) = (S(T )−K)+

at time T for this model is

V (t) = EQ[e−r(T−t)(S(T )−K)+|F(t)
]

= c(t, S(t)),

where

c(t, x) := e−r(T−t)EQ[(xe(r−m̃− 1
2
σ2)(T−t)+σ(W̃ (T )−W̃ (t))

N(T )∏
i=N(t)+1

(1 + Yi)−K
)+]

.

To find an expression for c(t, x), we first condition on
∏N(T )

i=N(t)+1(1 + Yi) and use

the independence lemma to define a function κ(t, x) as

κ(t, x) := e−rtEQ
[(
xe(r−

1
2
σ2)t+σ

√
tY −K

)+]
,

where Y has standard normal distribution. Note that we have an explicit expression

for Y from the Black-Scholes formula. Then

c(t, x) = EQ[κ(T − t, xe−m̃(T−t)
N(T )∏

i=N(t)+1

(1 + Yi))
]
.

Now again conditioning on N(T ) − N(t) = j and using the independence between

Y ′i s and N(T )−N(t) we have

c(t, x) = e−λ̃(T−t)
(λ̃(T − t))j

j!
EQ[κ(T − t, xe−m̃(T−t)

j∏
i=1

(1 + Yi))
]
.
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